PENDAHULUAN
Organisasi dan Arsitektur Komputer mempelajari bagaimana struktur komputer dan fungsi masing-masing pembentuk struktur serta mengetahui berbagai arsitektur perancangan sistem komputer untuk mencapai kinerja yang tinggi .
Komputer adalah sebuah mesin hitung elektronik yang secara cepat menerima informasi masukan digital dan mengolah informasi tersebut menurut seperangkat instruksi yang tersimpan dalam komputer tersebut dan menghasilkan keluaran informasi yang dihasilkan setelah diolah. Daftar perintah tersebut dinamakan program komputer dan unit penyimpanannya adalah memori komputer.
Organisasi Komputer adalah bagian yang terkait erat dengan unit–unit operasional dan interkoneksi antar komponen penyusun sistem komputer dalam merealisasikan aspek arsitekturalnya. Contoh aspek organisasional adalah teknologi hardware, perangkat antarmuka, teknologi memori, sistem memori, dan sinyal–sinyal kontrol.
Arsitektur Komputer lebih cenderung pada kajian atribut–atribut sistem komputer yang terkait dengan seorang programmer. Contohnya, set instruksi, aritmetika yang digunakan, teknik pengalamatan, mekanisme I/O.
Generasi Pertama : Tabung Vakum (1945 – 1955)
ENIAC (Electronic Numerical Integrator And Computer), pada tahun 1946 dirancang dan dibuat oleh John Mauchly dan John Presper Eckert di Universitas Pennsylvania merupakan komputer digital elektronik untuk kebutuhan umum pertama di dunia. ENIAC dibuat di bawah lembaga Army’s Ballistics Research Laboratory (BRL). Sebuah badan yang bertanggung jawab dalam pembuatan jarak dan tabel lintasan peluru kendali senjata baru. Sebelumnya tugas ini dilakukan oleh kurang lebih 200 personil dengan menggunakan kalkulator untuk menyelesaikan persamaan matematis peluru kendali yang memakan waktu lama.
Tahun 1946 komputer dengan stored-program concept dipublikasikasikan, yang kemudian di kenal dengan Komputer IAS (Computer of Institute for Advanced Studies). Struktur komputer IAS ini terdiri :
- 1. Memori Utama, untuk menyimpan data maupun instruksi.
- 2. Arithmetic Logic Unit (ALU), untuk mengolah data binner.
- 3. Control Unit, untuk melakukan interpretasi instruksi – instruksi di dalam memori sehingga adanya eksekusi instruksi tersebut.
- 4. I/O, untuk berinteraksi dengan lingkungan luar.
Generasi Kedua : Transistor (1955 – 1965)
Sejak pesatnya teknologi semikonduktor hingga menghasilkan komponen transistor membawa perubahan besar pada dunia komputer. Komputer era ini tidak lagi menggunakan tabung vakum yang memerlukan daya operasional besar, tabung – tabung itu digantikan komponen kecil bernama transistor. Konsumsi daya listrik amat kecil dan bentuknyapun relatif kecil.
Transistor ditemukan di Bell Labs pada tahun 1947 dan tahun 1950 telah meluncurkan revolusi elektronika modern.
Generasi Ketiga : Integrated Circuits (1965 – 1980)
Pada tahun 1958 terjadi revolusi elektronika kembali, yaitu ditemukannya integrated circuit (IC) yang merupakan penggabungan komponen – komponen elektronika dalam suatu paket. Dengan ditemukan IC ini semakin mempercepat proses komputer, kapasitas memori makin besar dan bentuknya semakin kecil
Generasi Keempat : Very Large Scale Integration (1980 - ????)
Era keempat perkembangan genarasi komputer ditandai adanya VLSI. Paket VLSI dapat menampung 10.000 komponen lebih per kepingnya dengan kecepatan operasi mencapai 100juta operasi per detiknya. Masa – masa ini diawali peluncuran mikroprosesor Intel seri 4004. Mikroprosesor 4004 dapat menambahkan dua bilangan 4 bit dan hanya dapat mengalikan dengan cara pengulangan penambahan.
Memang masih primitif, namun mikroprosesor ini tonggak perkembangan mikroprosesor – mikroprosesor canggih saat ini. Tidak ada ukuran pasti dalam melihat mikroprosesor, namun ukuran terbaik adalah lebar bus data : jumlah bit data yang dapat dikirim – diterima mikroprosesor. Ukuran lain adalah jumlah bit dalam register.
Tahun 1972 diperkenalkan dengan mikroprosesor 8008 yang merupakan mikroprosesor 8 bit. Mikroprosesor ini lebih kompleks instruksinya tetapi lebih cepat prosesnya dari pendahulunya
Klasifikasi Arsitektur Komputer
Mesin Von Neumann
Kriteria mesin Von Neumann :
1. Mempunyai subsistem hardware dasar yaitu sebuah CPU, sebuah memori dan sebuah I/O system
2. Merupakan stored-program computer
3. Menjalankan instruksi secara berurutan
4. Mempunyai jalur (path) bus antara memori dan CPU
Mesin Non-Von Neumann
Pada tahun 1966, Flyyn mengklasifikasikan arsitekturkomputer berdasarkan sifatnya yaitu :
1. Jumlah prosesor
2. Jumlah program yang dapat dijalankan
3. Struktur memori
Menurut Flyyn ada 4 klasifikasi komputer :
1. SISD (Single Instruction Stream, Single Data Stream)
2. SIMD (Single Instruction Stream, Multiple Data Stream)
3. MISD (Multiple Instruction Stream, Single Data Stream)
4. MIMD (Multiple Instruction Stream, Multiple Data Strea
KUALITAS ARSITEKTUR KOMPUTER
Generalitas
Generalitas adalah ukuran besarnya jangkauan aplikasi yang bisa cocok dengan arsitektur. dan computer yang terutama digunakan untuk aplikasi bisnis menggunakan aritmetik decimal. Sistem umum memberikan dua jenis aritmetik. Salah satu pembahasan utama oleh kalangan peneliti komputer selama tabun 1980-an adalah persoalan bagusnya generalitas.
Salah satu argumen komersial dalam menerapkan generalitas adalah bahwa, karena ia menyebabkan perancangan komputer menjadi sulit, malm perusahaan yang melakukan perancangan tersebut bisa mengurangi peniruan rancangan oleh perusahaanlain.
Daya Terap
Daya terap (applicability) adalah pemanfaatan arsitektur untuk penggunaan yang telah direncanakannya. Buku ini membahas komputer yang terutama dirancang untuk satu dari dua area aplikasi utama : (1) aplikaSi ihniah dan teknis dan (2) aplikasi komersil biasa. Aplikasi ilmiah dan teknis adalah aplikasi yang biasanya untuk memecahkan persamaan kompleks dan untuk penggunaan aritmetik floating point ekstensif.
Efisiensi
Efisiensi adalah ukuran rata-ratajumlah hardware dalam komputer yang selalu sibuk selama penggunaannya biasa. Arsitektur yang efisien memungkinkan (namun tidak memastikan) terjadinya implementasi yang efisien. Salah satu sifat arsitektur yang efisien adalah bahwa ia secara relative cenderung sederhana. Karena untuk merancang sistem yang kompleks secara benar begitu sulit, maka kebanyakan komputer mempunyai sebuah komputer inti (core computer) efisien yang sederhana, yaitu CU.
Kemudahan Penggunaan
Kemudahan penggunaan arsitektur adalah ukuran kesederhanan bagi programmer sistem untuk mengembangkan atau membuat software untuk arsitektur tersebut, misalnya sistem pengoperasiannya atau compilemya. Oleh karena itu, kemudahan penggunaan ini merupakan fungsi ISA dan berkaitan erat dengan generalitas.
Daya Tempa (malleability)
Dua ukuran yang terakhir daya tempa dan daya kembang umumnya berlaku untuk implementasi computer dalam satu rumpun. Daya terap arsitektur adalah ukuran kemudahan bagi perancang untuk mengimplementasikan komputer (yang mempunyai arsitektur itu) dalam jangkauan yang luas. Pada Apple Macintosh atau IBM PC AT, spesifIkasi arsitektumya jauh lebih lengkap, sehingga semua implementasi hampir sama.
Daya Kembang
Daya kembang (expandability) adalah ukuran kemudahan bagi perancang untuk meningkatkan kemampuan arsitektur, misalnya kemampuan ukuran memori maksimumnya atau kemampuan aritmetiknya. Dalam hal ini, daya kembang juga berkaitan dengan jumlah CPU yang dapat digunakan oleh system secara efektif. Barrier (penyangga) pada komputer yang mempunyai CPU lebih dari satu umumnya tidak jelas. Jika programmer sistem mendapatkan kesulitan untuk menyinkronkan CPU-CPU, rnisalnya, maka sinkronisasi ini secara efektif akan membatasi jumlah CPU yang dapat digunakan sistem.
FAKTOR YANG MEMPENGARUHI KEBERHASILAN ARSITEKTUR KOMPUTER
1. Manfaat Arsitektural
Ada empat ukuran pokok yang menentukan keberhasilan arsitektur, yaitu manfaat arsitekturalnya (architectural merit) :
· Daya terap Sebaiknya, arsitektur ditujukan untuk aplikasi yang telah ditentukan.
· Daya tempa. Bila arsitekturlebih mudah membangunsistem yang kecil, maka ia akan lebih baile.
· Daya kembang. Lebih besar daya kembang arsitektur dalam daya komputasi, ukuran memori, kapasitasI/O, dan jumlah prosesor,maka ia kan lebih baile.
· Kompatibilitas (daya serasi-pasang).
2. Keterbukaan arsitektur
Arsitektur dikatakan open (terbuka) bila perancangnya mempublikasikan spesifikasinya
3. Keberadaan model pemrograman yang kompatibel don bisa dipahami.
Beberapa komputer yang berparalel tinggi begitu sulit untuk digunakan, sehingga ia hanya menjadi daya tarik bagi para analis untuk menemukan cara baru untuk menggunakannya.
4. Kualitas implementasi awal.
Ada beberapa komputer yang nampaknya merupakan mesin yang baik, yang mempunyai software dan sifat operasional yang baik.
5. Kinerja Sistem
Kinerja sistem sebagian ditentukan oleh kecepatan komputer. Untuk mengukur kinerja komputer, para arsitek menjalankan serangakian program yang standart, yang disebut benchmark,pada komputer. Benchmark ini memungkinkan arsitek untuk menentukan kecepatan relatif dari semua komputer yang menjalankan benchmark tersebut dan menentukan kecepatan absolute dari tiap komputer. Hasilnya bermanfaat bagi arsitek untuk melaporkan kinerja sistem dengan menggunakan berbagai performance metrics (metrik kinerja).
6. Biaya Sistem
Bagian pokok dari biaya sistem computer adalah biaya peralatan logika dasarnya, yang sangat bervariasi dari peralatan satu dengan yang lainnya. beberapa aplikasi dengan metrik tersebut diperlukan adalah :
· Reliabilitas (keandalan) adalah sangat diperlukan oleh computer yang digunakan untuk mengontrol penerbangan, mengontrol kearnanan instalasi nuklir, atau kegiatan apa saja yang mempertaruhkan keselarnatan manusia.
· Kemudahan perbaikan khususnya penting bagi komputer yang mempunyai jumlah komponen yang besar.
Struktur dasar computer dan organisasi computer
Diantaranya :
1. Central Processing Unit (CPU): Mengontrol operasi komputer dan membentuk fungsi-fungsi pengolahan datanya. Seringkali CPU cukup disebut sebagai processor (prosesor) saja.
2. Memori utama: Menyimpan data.
3. I/O: Memindahkan data antara komputer dengan lingkungan luarnya.
4. System Interconnection: Beberapa mekanisme komunikasi antara CPU, memori utama dan I/O.
Adapun komponen-komponen struktur utama dari CPU adalah sebagai berikut :
1. Control Unit: Mengontrol operasi CPU dan pada gilirannya mengontrol komputer.
2. Arithmetic and Logic Unit (ALU): Membentuk fungsi-fungsi pengolahan data komputer.
3. Register: Sebagai penyimpan internal bagi CPU.
4. CPU Interconnections: Sejumlah mekanisme komunikasi antara control unit, ALU, danregister
REFERENSI :
REFERENSI :
- http://ocw.gunadarma.ac.id/course/industrial-technology/program-of-electronics-engineering-study-2013-s1/arsitektur-komputer/pendahuluan
- http://images.jabeschand.multiply.multiplycontent.com/attachment/0/SxnpWgoKCEoAADIp8fU1/1.2.%20Struktur%20dan%20Organisasi%20Komputer.pdf?key=jabeschand:journal:15&nmid=301982165
- http://eprints.undip.ac.id/4862/1/Dasar_Komputer_dan_Pemrograman.pdf
- http://www.suwidi.or.id/downloads/kuliah/ArKom%2002%20(Klasifikasi%20Sistem%20Komputer)%20PDF.pdf
Tidak ada komentar:
Posting Komentar